

2024/2025

SCUOLA	
NUMERO DI SQUADRA	
CATEGORIA	4ª classe, categoria B
COMMISSARIO DI GARA	

N.O.	NOME E COGNOME	CLASSE	NOME E COGNOME DEL
	DELL'ALLIEVO		MENTORE
1.			
2.			

RISPOSTE:

	4 ^a classe SMS, categoria B						
4.1.		4.2.		4.6.		4.11.	
		4.3.		4.7.		4.12.	
		4.4.		4.8.		4.13.	
		4.5.		4.9.		4.14.	
				4.10.			

www.matzelcic.com.hr

Autrice degli esercizi: Maja Zelčić, prof. di matematica Revisione a cura di:

Ljiljana Centrih Lovrić, prof. di lingua e letteratura croata

Recensione: Luka Milačić, studente PMF Toni Brajko, studente FER Finale 17/05/2025

RISPOSTA ESATTA: 10 punti RISPOSTA "E": 0 punti ALTRO: –2 punti

4.1.

1	I	3	A	5
6	7	N	9	ш
F	12	13	14	15
16	17	18	Ε	20

 $F+I\cdot N:A+L-E=?$

A. nessuna delle	В.	C.	D.	E. preferiamo non
opzioni indicate	-4	17	6	rispondere

RISPOSTA ESATTA: 20 punti RISPOSTA "E": 0 punti ALTRO: –4 punti

4.2. Quanti divisori ha il numero *a*?

$$a = \log_2 \frac{\sqrt[5]{1024^3}}{2^{-22}} \cdot \sin^2 \frac{11111\pi}{4} \cdot \binom{8}{6}$$

\mathbf{A} . a non è un	В.	C.	D.	E. preferiamo non
numero naturale	8	12	10	rispondere

4.3. La simmetria assiale rispetto alla retta *AC* riflette l'esagono regolare *ABCDEF* in un nuovo esagono regolare. Se esprimiamo tutte le distinte (diverse) distanze del punto *E* dai vertici del nuovo esagono e le mettiamo in rapporto dalla minore alla maggiore, che cosa otterremo?

 A.
 B.
 C.
 D.
 E.
 preferiamo non rispondere

 $1: \sqrt{2}: 2: 3$ $1: \sqrt{3}: \sqrt{7}: 3$ $1: \sqrt{2}: \sqrt{3}: 2$ E.
 preferiamo non rispondere

- 4.4. Tin e Jakov stavano giocando al gioco "Indovina il numero". Tin ha chiesto a Jakov di:
 - pensare ad un numero di tre cifre
 - aggiungere 99 al numero pensato
 - raddoppiare il numero ottenuto
 - scambiare le cifre delle unità e delle decine del numero che ha ottenuto
 - dire alcune proprietà del numero che ha ottenuto alla fine.

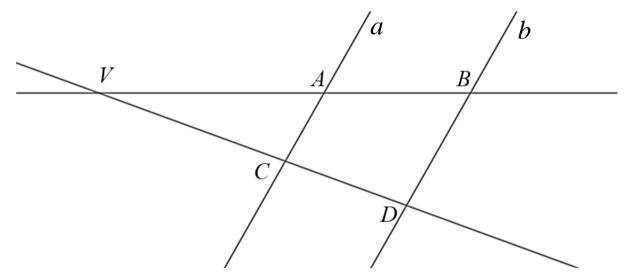
Dopo che Jakov ha detto che al termine ha ottenuto un numero di tre cifre che è divisibile per 5 e la cui somma delle cifre è 6, Tin non era sicuro di quale fosse il numero pensato. A quanti numeri che soddisfano le proprietà indicate poteva aver pensato Jakov?

A.
2
B.
C.
4
D. non è possibile determinarlo

E. preferiamo non rispondere

4.5. Qual è l'immagine (insieme dei valori) della funzione data?

$$f(x) = \sin|x| + |\sin x|$$


A.	В.	C.	D.	E. preferiamo non
[-2, 2]	[0, 2]	[-1, 2]	[-1, 1]	rispondere

RISPOSTA ESATTA: 30 punti RISPOSTA "E": 0 punti ALTRO: -6 punti

4.6. Ante, Bruno, Dane, Edo e Frane hanno conquistato i primi cinque posti nella competizione. Quante diverse distribuzioni dei primi cinque posti esistono se Bruno non è stato migliore di Dane, Edo non è stato migliore di Ante e Frane non era quinto?

A.	B.	C.	D.	E. preferiamo non
48	6	24	60	rispondere

- 4.7. Qual è l'ampiezza dell'angolo ∠CED se valgono le affermazioni date?
 - le rette *a* e *b* sono parallele
 - |VC| = |CB|
 - |CD| = |DB|
 - $|\angle VBD| = \gamma$
 - la bisettrice dell'angolo $\angle DCA$ interseca la retta b nel punto E

A.	B.	C.	D.	E. preferiamo non
$\frac{2\gamma}{3}$	$\frac{\gamma}{2}$	$90^{\circ} + \frac{\gamma}{3}$	$180^{\circ} - \frac{\gamma}{3}$	rispondere

4.8. I numeri distinti a, b, c e d sono numeri primi e la loro somma è 81. La somma del divisore più piccolo e di quello più grande del numero a è 32. Quanti insiemi di numeri $\{a, b, c, d\}$ esistono?

A. non è possibile	B.	C.	D.	E. preferiamo non
determinarlo	10	5	4	rispondere

4.9. Quante terne ordinate di numeri naturali (p, q, r) soddisfano l'equazione data?

$$p^2 - 767 = 5q + r^4$$

A.	В.	C.	D.	E. preferiamo non
0	1	2	più di 2	rispondere

- 4.10. L'area del triangolo ABC è di 160 cm². I punti A_1 , B_1 e C_1 sono i punti medi dei lati di tale triangolo (A_1 è il punto medio del lato \overline{BC} , B_1 del lato \overline{AC} e C_1 del lato \overline{AB}). Il punto S è l'intersezione tra la mediana $\overline{AA_1}$ e il segmento $\overline{B_1C_1}$ (congiungente i punti medi dei lati \overline{AC} e \overline{AB}). Quante delle seguenti affermazioni sono sempre esatte?
 - $|SC_1| = |SB_1|$
 - il perimetro del triangolo A_1CB_1 è la metà del perimetro del triangolo ABC
 - |AS|: $|SA_1| = 2:1$
 - l'area del quadrilatero SA_1CB_1 è 60 cm²
 - $|\angle BAA_1| = |\angle B_1A_1S|$
 - l'area del triangolo AC_1A_1 è uguale all'area del triangolo A_1CB_1

A.	B.	C.	D.	E. preferiamo non
5	4	3	2	rispondere

RISPOSTA ESATTA: 40 punti

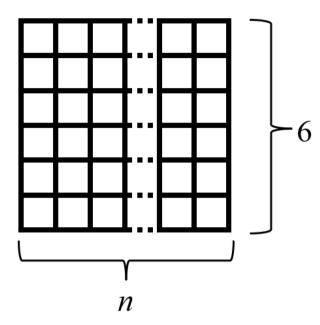
RISPOSTA "E": 0 punti

ALTRO: -8 punti

4.11. Quante soluzioni reali ha il seguente sistema di equazioni?

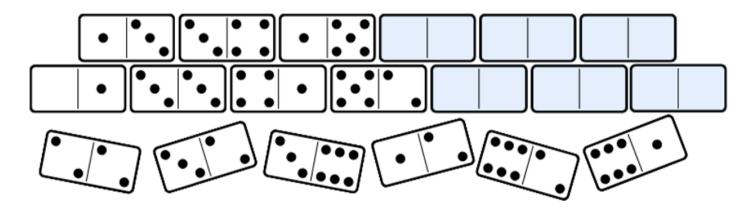
$$\begin{cases} x_1^2 + 1 = x_2 + x_3 \\ x_2^2 + 1 = x_3 + x_4 \\ \dots \\ x_{99}^2 + 1 = x_{100} + x_1 \\ x_{100}^2 + 1 = x_1 + x_2 \end{cases}$$

A.	В.	C.	D.	E. preferiamo non
0	1	2	più di 2	rispondere


4.12. Per quale tra i numeri reali k proposti, l'equazione data avrà esattamente 12 soluzioni reali?

$$\left| \left| |x| - 2 \right| - 3 \right| - 4 = k \cdot \cos\left(\frac{\pi x}{2}\right)$$

A.	В.	C.	D. non esiste un	E. preferiamo non
4	5	-4	tale k	rispondere


Finale 17/ 05/2025

4.13. Il rettangolo nell'immagine ha 6 righe e *n* colonne. Quante colonne laterali dobbiamo eliminare affinché il numero di quadrati si riduca di 420?

A.	B.	C.	D . nessuna delle	E. preferiamo non
70	20	30	opzioni indicate	rispondere

4.14. Giulia sta disponendo le tessere del domino come mostrato nell'immagine. In quanti modi può disporre correttamente le rimanenti 6 tessere del domino?

A.	В.	C.	D.	E. preferiamo non
9	12	10	8	rispondere